A Bistable Switch Mechanism for Stem Cell Domain Nucleation in the Shoot Apical Meristem
نویسندگان
چکیده
In plants, the stem cells residing in shoot apical meristems (SAM) give rise to above-ground tissues (Aichinger et al., 2012). Hence, the maintenance of stem cell niches is of central importance to a plant’s continued growth and development (Fletcher and Meyerowitz, 2000; Gordon et al., 2009). For the flowering plantArabidopsis thaliana, the genetic determinants of stem cell growth, division, and localization have been identified, and negative feedback between a homeodomain transcription factor, WUSCHEL (WUS), and a receptor kinase, CLAVATA (CLV), is known to play a crucial role in controlling the reservoir of stem cells in the central domain of a SAM. The morphology of plant stems and floral organs is controlled in large part by the size and stability of SAMs, which is controlled, in turn, by spatiotemporal patterns of WUS and CLV expression in meristems. For example, loss of restrictive signals in clvmutants of Arabidopsis leads to enlargement of shoot and floral meristems, resulting in extra floral organs and club-shaped siliques (Jönsson et al., 2005). The size, localization and stability of stem cell domains should be determined, in principle, by the interactions of WUS and CLV proteins, especially by their propensities to diffuse through the domain and by the rates of the molecular reactions that control their activities. Within this paradigm, reaction-diffusion (RD) models of WUS-CLV interactions have been popular mathematical models of SAM dynamics (Jönsson et al., 2005; Hohm et al., 2010; Fujita et al., 2011). In RD models, the spontaneous generation of inhomogeneous distributions of WUS and CLV in SAM domains is usually attributed to mechanisms based on a “Turing” instability (Turing, 1952; Segel and Jackson, 1972). The generic RD equations for spatiotemporal changes in the concentrations, u(x,t) and v(x,t), of two interacting proteins are
منابع مشابه
Comparison of Domain Nucleation Mechanisms in a Minimal Model of Shoot Apical Meristem
Abstract Existing mathematical models of the shoot apical meristem (SAM) explain nucleation and confinement of a stem cell domain by Turing’s mechanism, assuming that the diffusion coefficients of the activator (WUSCHEL) and inhibitor (CLAVATA) are significantly different. As there is no evidence for this assumption of differential diffusivity, we recently proposed a new mechanism based on a bi...
متن کاملThe ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity
In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) tra...
متن کاملShoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells.
Plant shoot development depends on the perpetuation of a group of undifferentiated cells in the shoot apical meristem (SAM). In the Petunia mutant hairy meristem (ham), shoot meristems differentiate postembryonically as continuations of the subtending stem. HAM encodes a putative transcription factor of the GRAS family, which acts non-cell-autonomously from L3-derived tissue of lateral organ pr...
متن کاملInduction of differentiation in the shoot apical meristem by transient overexpression of a retinoblastoma-related protein.
The shoot apical meristem contains cells that undergo continual growth and division to generate the building blocks for the aerial portion of the plant. As cells leave the meristem, they undergo differentiation to form specific cell types. Most notably, heterotrophic cells of the meristem rapidly gain autotrophic capability by synthesis and assembly of components of the chloroplast. At the same...
متن کاملA Quantitative and Dynamic Model for Plant Stem Cell Regulation
Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in plant science
دوره 7 شماره
صفحات -
تاریخ انتشار 2016